Эрмитова форма - определение. Что такое Эрмитова форма
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Эрмитова форма - определение

Эрмитовое пространство

Эрмитова форма         

выражение вида

,

где akt = atk (а - число, комплексносопряжённое с а). Матрица, составленная из коэффициентов Э. ф., называется эрмитовой; линейное преобразование, задаваемое эрмитовой матрицей, называется эрмитовым. Вопрос о представлении целых чисел Э. ф. при целочисленных значениях аргументов исследовал Ш. Эрмит (1854). Теория Э. ф. во многом аналогична теории квадратичных форм (См. Квадратичная форма). См. также Эрмитов оператор.

Эрмитова форма         
Эрмитова форма — естественный аналог понятия симметричной билинейной формы для комплексных векторных пространств. Для эрмитовых форм верны аналоги многих свойств симметрических форм: приведение к каноническому виду, понятие положительной определенности и критерий СильвестраШафаревич И.
Форма (лингвистика)         
ЯЗЫКОВОЙ ЗНАК, В КОТОРОМ ТЕМ ИЛИ ИНЫМ ГРАММАТИЧЕСКИМ СПОСОБОМ ВЫРАЖАЕТСЯ ГРАММАТИЧЕСКОЕ ЗНАЧЕНИЕ
Словоизменительная форма; Грамматическая форма
Граммати́ческая фо́рма — языковой знак, в котором тем или иным грамматическим способом (иначе говоря, регулярно, стандартно) выражается грамматическое значениеЛопатин В. В.

Википедия

Эрмитова форма

Эрмитова форма — естественный аналог понятия симметричной билинейной формы для комплексных векторных пространств. Для эрмитовых форм верны аналоги многих свойств симметрических форм: приведение к каноническому виду, понятие положительной определенности и критерий Сильвестра.